Publications
At MedGenome, we are deeply focused on continuous innovation, and publishing our findings for the larger benefit of the genetic testing community. Read through our publications for details of our latest work.
Date: August 24, 2023
Non-invasive prenatal test (NIPT) has become a popular screening test worldwide for screening common trisomies. In addition, the test can also sex chromosomal aneuploidies (SCAs) with similar sensitivity. In recent years, the scope of NIPT has extended to screen pregnancies for clinically significant microdeletions (MDs), rare autosomal aneuploidies, and subchromosomal abnormalities. The clinical utility of NIPT screening beyond trisomies 21,18,13 and SCAs are still being evaluated because of low positive predictive value which in turn leads to an increase in invasive procedures. Here, we present a case where SNP – NIPT correctly identified a microdeletion syndrome, i.e., 22q11.2DS in a pregnant woman with normal ultrasound findings. This NIPT finding was further confirmed in the chromosomal microarray study and FISH.
Date: August 8, 2023
Abstract
The benefits of large-scale genetic studies for healthcare of the populations studied are well documented, but these genetic studies have traditionally ignored people from some parts of the world, such as South Asia. Here we describe whole genome sequence (WGS) data from 4806 individuals recruited from the healthcare delivery systems of Pakistan, India and Bangladesh, combined with WGS from 927 individuals from isolated South Asian populations. We characterize population structure in South Asia and describe a genotyping array (SARGAM) and imputation reference panel that are optimized for South Asian genomes. We find evidence for high rates of reproductive isolation, endogamy and consanguinity that vary across the subcontinent and that lead to levels of rare homozygotes that reach 100 times that seen in outbred populations. Founder effects increase the power to associate functional variants with disease processes and make South Asia a uniquely powerful place for population-scale genetic studies.
Date: April 5, 2023
ABSTRACT
BACKGROUND Filaggrin (FLG) gene encoding the protein filaggrin plays an important role in barrier function of the skin and its alteration is a predisposing factor for atopic dermatitis. FLG gene variants result in absent or decreased filaggrin protein. Worldwide, the prevalence of FLG variants ranges from 14 to 56%. FLG null variants are distinct in each population.
OBJECTIVES To study the FLG gene polymorphisms in Indian children and attempt a genotype-phenotype correlation in atopic dermatitis.
METHODS This was a cross-sectional, multicentre study conducted on 75 Indian children. Demographic details, clinical features and identified FLG null variants were recorded. We performed a whole gene sequencing of the entire FLG coding region using next-generation sequencing technology.
Comprehensive laboratory diagnosis of Fanconi anaemia: comparison of cellular and molecular analysis
Date: March 9, 2023
Abstract Background: Fanconi anaemia (FA) is a rare inherited bone marrow failure disease caused by germline pathogenic variants in any of the 22 genes involved in the FA-DNA interstrand crosslink (ICL) repair pathway. Accurate laboratory investigations are required for FA diagnosis for the clinical management of the patients. We performed chromosome breakage analysis (CBA), FANCD2 ubiquitination (FANCD2-Ub) analysis and exome sequencing of 142 Indian patients with FA and evaluated the efficiencies of these methods in FA diagnosis.
Methods: We performed CBA and FANCD2-Ub analysis in the blood cells and fibroblasts of patients with FA. Exome sequencing with improved bioinformatics to detect the single number variants and CNV was carried out for all the patients. Functional validation of the variants with unknown significance was done by lentiviral complementation assay.
Results: Our study showed that FANCD2-Ub analysis and CBA on peripheral blood cells could diagnose 97% and 91.5% of FA cases, respectively. Exome sequencing identified the FA genotypes consisting of 45 novel variants in 95.7% of the patients with FA. FANCA (60.2%), FANCL (19.8%) and FANCG (11.7%) were the most frequently mutated genes in the Indian population. A FANCL founder mutation c.1092G>A; p.K364=was identified at a very high frequency (~19%) in our patients.
Date: April 14, 2023
ABSTRACT BACKGROUND Filaggrin (FLG) gene encoding the protein filaggrin plays an important role in barrier function of the skin and its alteration is a predisposing factor for atopic dermatitis. FLG gene variants result in absent or decreased filaggrin protein. Worldwide, the prevalence of FLG variants ranges from 14 to 56%. FLG null variants are distinct in each population.
OBJECTIVES To study the FLG gene polymorphisms in Indian children and attempt a genotype-phenotype correlation in atopic dermatitis.
METHODS This was a cross-sectional, multicentre study conducted on 75 Indian children. Demographic details, clinical features and identified FLG null variants were recorded. We performed a whole gene sequencing of the entire FLG coding region using next-generation sequencing technology.
RESULTS The prevalence of FLG null variants was 34.7%. A total of 20 different FLG loss of function variants in 26 children were documented. Sixteen (80%) variants were novel and four (20%) were previously reported in Asian and European populations. We found a statistically significant association between FLG variants with early age of onset of atopic dermatitis (P = 0.016) and elevated serum IgE levels (P = 0.051). There was no significant difference between atopic dermatitis phenotypes in children having one variant as compared to children harbouring two or more null variants.
LIMITATION Small sample size.
CONCLUSION Our study reports a unique set of FLG variants different from Asian and European populations, with these variants being significantly associated with an early age of onset of atopic dermatitis and elevated serum IgE levels.
Date: March 28, 2023
The sarcoglycanopathies are autosomal recessive limb-girdle muscular dystrophies (LGMDs) caused by the mutations in genes encoding the α, β, γ, and δ proteins which stabilizes the sarcolemma of muscle cells. The clinical phenotype is characterized by progressive proximal muscle weakness with childhood onset. Muscle biopsy findings are diagnostic in confirming dystrophic changes and deficiency of one or more sarcoglycan proteins. In this study, we summarized 1,046 LGMD patients for which a precise diagnosis was identified using targeted sequencing. The most frequent phenotypes identified in the patients are LGMDR1 (19.7%), LGMDR4 (19.0%), LGMDR2 (17.5%), and MMD1 (14.5%). Among the reported genes, each of CAPN3, SGCB, and DYSF variants was reported in more than 10% of our study cohort. The most common variant SGCB p.Thr182Pro was identified in 146 (12.5%) of the LGMD patients, and in 97.9% of these patients, the variant was found to be homozygous. To understand the genetic structure of the patients carrying SGCB p.Thr182Pro, we genotyped 68 LGMD patients using a whole genome microarray. Analysis of the array data identified a large ~1Mb region of homozygosity (ROH) (chr4:51817441-528499552) suggestive of a shared genomic region overlapping the recurrent missense variant and shared across all 68 patients. Haplotype analysis identified 133 marker haplotypes that were present in ~85.3% of the probands as a double allele and absent in all random controls. We also identified 5 markers (rs1910739, rs6852236, rs13122418, rs13353646, and rs6554360) which were present in a significantly higher proportion in the patients compared to random control set (n = 128) and the population database. Of note, admixture analysis was suggestive of greater proportion of West Eurasian/European ancestry as compared to random controls. Haplotype analysis and frequency in the population database indicate a probable event of founder effect.
Further systematic study is needed to identify the communities and regions where the SGCB p.Thr182Pro variant is observed in higher proportions. After identifying these communities and//or region, a screening program is needed to identify carriers and provide them counselling.
Date: December 29, 2022
Abstract
Dysferlinopathies are a group of limb-girdle muscular dystrophies causing significant disability in the young population. There is a need for studies on large cohorts to describe the clinical, genotypic and natural history in our subcontinent. To describe and correlate the clinical, genetic profile and natural history of genetically confirmed dysferlinopathies. We analysed a retrospective cohort of patients with dysferlinopathy from a single quaternary care centre in India. A total of 124 patients with dysferlinopathy were included (40 females). Median age at onset and duration of illness were 21 years (range, 13–50) and 48 months (range, 8–288), respectively. The average follow-up period was 60 months (range, 12–288). Fifty-one percent had LGMD pattern of weakness at onset; 23.4% each had Miyoshi and proximo-distal type while isolated hyperCKemia was noted in 1.6%. About 60% were born to consanguineous parents and 26.6% had family history of similar illness.
Date: December 22, 2022
AbstractCongenital myasthenic syndromes (CMSs) are a diverse group of diseases that have an underlying defect in transmission of signals from nerve cells to muscles that lead to muscular weakness. A 13-year-old male child born of consanguineous parents with profound motor developmental delay and normal cognition was referred to us. The younger male sibling aged 9 months was similarly affected. Electromyography (EMG) and nerve conduction studies revealed CMS. Clinical exome sequencing revealed a novel large deletion including the exons 2 to 9 of SYT2 gene which confirmed the diagnosis of presynaptic CMS type 7 in the siblings. The deletion was confirmed on a chromosomal exon microarray. The parents were confirmed carriers of the same mutation and were normal on clinical and EMG studies. This is the second case of CMS type 7 described with a large deletion of SYT2 gene, a first case with SYT2 gene mutation from India and overall 10th recessive case in the world.
Near-chromosomal de novo assembly of Bengal tiger genome reveals genetic hallmarks of apex predation
Date: December 20, 2022
Abstract
The tiger, a poster child for conservation, remains an endangered apex predator. Continued survival and recovery will require a comprehensive understanding of genetic diversity and the use of such information for population management. A high-quality tiger genome assembly will be an important tool for conservation genetics, especially for the Indian tiger, the most abundant subspecies in the wild. Here, we present high-quality near-chromosomal genome assemblies of a female and a male wild Indian tiger (Panthera tigris tigris). Our assemblies had a scaffold N50 of >140 Mb, with 19 scaffolds corresponding to the 19 numbered chromosomes, containing 95% of the genome.
Date: October 9, 2022
Abstract Purpose Despite COVID vaccination with ChAdOx1 ncov-19 (COVISHIELD®) (ChAdOx1 ncov-19) a large number of healthcare workers (HCWs) were getting infected in wave-2 of the pandemic in a cancer hospital of India. It was important therefore to determine the genotypes responsible for vaccine breakthrough infections. Methods & Objectives Retrospective observational study of HCWs. Whole genome sequencing of SARS CoV-2 using Illumina NovaSeq was done. Mutations from both waves were compared to identify genomic correlates of transmissibility and vaccine breakthrough infections.